Executive Function: Mathematics Achievement (Part III)

In addition to the executive functions discussed in Executive Function Part I and II (cognitive inhibition, switching retrieval strategies, and identifying, activating, manipulating relevant information), another executive function is the capacity to coordinate performance on two or more separate tasks and shift from one task to another. Each arithmetic fact and procedure is a compendium of multiple tasks involving subtasks. For example, keeping track of the component tasks (multiplication facts and partial products, place value, addition) in computing 23×7 need to be organized mentally and performed. To succeed in this process is the task of the executive function. However, given that the sub-tasks are parts of an integrated skill, the requirement for coordination is presumably low relative to performing multiple independent tasks.

Shifting is the flexibility to switch between different tasks, making decisions, and choosing strategies in multi-step and multi-operational problems and procedures. Solving complex mathematics problems requires prioritization because operations must be solved in a specific order. Impulse control is essential to stick with these problems long enough to completely solve them. Many children lose points in math not because they got the answer wrong but simply because they gave up too soon. Not enough storage space in their working memory prevents them from connecting the logic strings that many math problems require; organization skills are required to know which formula to apply and where to look to find the right ones; flexible thinking is necessary to help the math student forget about the previous problem and cleanly move on to the next. By focusing efforts on building these executive function skills, math proficiency is sure to improve.

Shifting ability predicts performance in mathematics. Shifting is required to switch between different procedures (e.g. adding or subtracting) when solving complex mathematical problems. For factual knowledge, working memory is likely to play a role in acquiring new facts as both sum and answer need to be held in mind together in order to strengthen the relationship between them. Shifting is an essential skill in multi-step and multi-concept operations, for example, simplifying an expression using the order of operations: Grouping—transparent and hidden, Exponents, Multiplication and Division in order of appearance, and Addition and Subtraction in order of appearance (GEMDAS), long-division, operations on fractions (adding fractions with different denominators—even finding the least common denominator requires shifting), solving a system of linear equations, etc. Competence in shifting can be achieved with mnemonic devices, graphic organizers, and organized sets of task sequence.

Solving problems requires understanding the task. This means analyzing tasks and setting goals and sub-goals. Doing task-analysis improves prioritization while fixed routines and mnemonic devices inhibit distractions that strengthen impulse control. Exercises that emphasize time management can also help children stay focused. These improve both organizational skills and flexible thinking in moving from one task to the next. Training in those areas can accompany mathematics lessons for better performance overall.

Organization Skills and Their Role in Mathematics Learning
Organization skills help a child take a systematic approach to problem solving by creating order out of disorder and requiring a step-by-step series of calculations, or executing a standard procedure. These executive function skills are crucial to becoming proficient in mathematics.

Organization skills range from learning how to collect all materials –physical objects/equipment/instruments necessary to understanding and completing a task, collecting and classifying the information (content) from the problem and stepping back and examining the complexity of the situation to organizing one’s thinking. For example, children use organizational skills when they take time to gather all of their notes before starting to study for a test or identifying what definitions, axioms, theorems, and postulates are needed in writing a proof.

Organization skills deal with:
(a) Organization of physical resources: Even the physical environment and workspace are key elements of this type of organization. Many students do not know how to use the space on writing paper—where to begin and what direction. There is no organization in the way they record information on paper and pursue calculations. There is no clear path to their work. This material-spatial disorganization – tendency to lose or misplace things; writing problems in disorganized fashion on the paper; difficulty bringing home or returning assignments in a timely way comes in the way of learning, particularly in mathematics.
(b) Organization of cognitive resources: Many intelligent students have adequate to higher cognitive abilities, but they do not have efficient strategies to organize their thoughts, systems, strategies, and approaches to solving problems. This ranges from note taking to summarizing. This includes (i) transitional disorganization – difficulty shifting gears smoothly, often resulting in rushing from one activity to the next or the opposite not being able to shift from one task to other; difficulty settling down to work or preparing to leave for school, and (ii) prospective retrieval disorganization – difficulty remembering to do something that was planned in advance, such as forgetting the deadline of a project until the night before it is due.
(c) Organization of emotional resources: Because of their lack of organization, many students feel overwhelmed by mathematics assignments. This includes temporal-sequential disorganization – confusion about time and sequencing of tasks; procrastination; difficulty estimating how long a task will take to complete.

These disorganizations result in frustrations and then math anxiety among students.

Self-Awareness is an example of organization as an executive skill helpful in learning and achieving in mathematics. Teachers not only require their students to complete math examples correctly but also to explain their rationale and reasoning, which reinforces their achievements in mathematics. Self-Awareness involves the capacity to think about one’s thinking and then share it in a way that others can understand. Self-Awareness skills help kids understand their own strengths and weaknesses and can be helpful in determining areas in which more study is required.

How Do Executive Functions Work?
How do the executive functions work—and especially how do these help us to learn? In particular, how do they function in learning mathematics? What is the role of the understanding of the functioning of the executive function in teachers’ instructional decisions? Generally, teachers’ instructional decisions are based on a mix of theories learned in teacher education, trial and error, knowledge of the craft and content, and gut instinct. Such knowledge often serves us well, but is there anything sturdier to rely on? That is where the appropriate knowledge of EF comes to play.

Many teachers are not aware of the importance of EF skills in learning mathematics. While the mechanisms by which EF skills support the acquisition as well as the application of mathematics knowledge are far from clear, a basic understanding about EF is essential to inform classroom practice to help students with and without EF skill deficits.

The executive function skills help us make decisions such as: focus on task(s), classify and organize information, make connections and see patterns, refer tasks from one slave system to other, break the main task into subtasks, sequence the tasks, delegate, allocate and apportion resources to different functions, and maximize the functions of the slave systems.

EF evaluates the outcome of tasks and decisions, monitors the progress, reports the progress to different systems, becomes the communicator of the success and failure of the tasks, and experiences the results of the endeavor, prepares for the next experience, and even arranges for new experiences. For example, in the long-division algorithm, the executive function skills of inhibition (when to estimate, multiply, subtract, and bring down), updating (decide: “What is the next step?” “How do I use this information? “Where do I place the quotient, if the quotient is not working should I try 2?”), shifting (from one operation to another—divide, multiply, then subtract, etc.), and mental-attentional capacity (M-capacity) contributes to and helps children’s ability to keep the sequence of tasks in this procedure.

When children reach fluency in a procedure, they are ready to acquire the competence in solving word problems such as those involving division. At each juncture of the procedure, different EF functions (inhibition, updating, shifting, and M-capacity) are called upon. For example, updating mediates the relationship between multiplication performance (controlling for reading comprehension score) and latent attentional factors M-capacity and inhibition. Updating plays a more important role in predicting performance on multiple-step problems than age, whereas age and updating are equally important predictors on one-step problems.

Correlational studies provide evidence of a relationship between EF skills and mathematics which may be stronger than the relationship between EF skills and other areas of academic performance. However, we are not sure of the one-to-one relationship between EF skills (inhibition, shifting, working memory) and the different components of mathematics: factual (e.g. 6 + 4 = 10), conceptual (e.g. knowing that addition is the inverse of subtraction) and procedural (e.g. ′carrying′ when adding above 10 in multi-digit number additions) knowledge.

Individuals differ in their profile of performance across linguistic, conceptual, and procedural components and may have strengths in one component but not in others, suggesting that different mathematics components rely on differential sets of EF skills and/or their mathematics learning personalities. Similarly, the role and contribution of executive function skills differ across these components. For example, while working memory ability is related to fraction computation, it is not a predictor of conceptual understanding of fractions. In contrast, inhibition has been linked to the application of additive concepts. We need to understand how EF skills support different aspects of mathematical competence. The following description and the summary chart show the interrelationships between the mathematics components and the EF skills.

Concepts and Understanding

  • Working Memory (Recalling prior knowledge to relate to new ideas; keeping multiple ideas in mind at once; making connections)
  • Self Awareness (Being able to explain and communicate one’s own reasoning in writing or to others; being able to think about and explain the steps one uses to solve different kinds of problems; being able to explain the reasoning behind completing a math problem a certain way)

Computational Procedures

  • Working Memory (Keeping different steps involved in solving a problem in mind; recalling which formulas to use to solve which a problem; Keeping parts to a multi­step problem in mind, etc.)
  • Focus and inhibition (Determining the primacy of a task; Sustaining attention to the task; Not getting distracted by the irrelevant information in the middle of completing a problem; Setting goals and working to meet them)
  • Planning (What kind of the problem is this; Planning the steps one will use in solving the problem; Thinking ahead about what steps to take and what options one has for solving it;)
  • Organization (Organizing the work on the page so that it is clear—where to start, what unit to use in the diagram, does it match the given information, organizing images/notes on page; deciding on the sequence of steps; organizing information in a word problem)

Fluency

  • Working Memory (Keeping all of the different components to a problem in mind while solving it; thinking about previous steps while doing the current one; retrieving previously learned information to apply it to the current problem/task; applying math rules; etc.)
  • Planning (Thinking ahead about what kind of fact/procedure/problem this is, and what options one has for solving it; planning the steps one will use to solve the problem; prioritizing strategies to be used)
  • Self­ Awareness (Thinking about one’s own reasoning and whether or not it makes sense as one tries to construct a fact/execute the procedure/solve a problem; thinking about the steps you used to solve previous problems; self-correcting and checking one’s work)

Flexibility in Thought and Action

  • Shifting between different representations written in sentences, computation, etc.; being able to switch one’s approach/strategy when it is not working)

capture2

The above model describes the relationships between executive function skills and components of mathematical knowledge. The solid lines indicate direct relationships between the mathematical component and the EF skills. Dashed lines represent relationships that change over the course of development and age. When a student has mastered facts, concepts, and procedures using efficient and generalizable skills, it automatically results in flexibility of thought.

Nuts and Bolts: Recognizing and Assisting Executive Function
Strategies for Improving Math Skills & Executive Functions
Both mathematics ability and EF skills improve during development and therefore the relationship between the two will also change as children get older. In other words, the executive function skill levels are not fixed. Everyone has the ability to improve executive function skills with practice while improving proficiency in math at the same time.

A series of studies have indicated the importance of developing executive functions in early ages for future academic and math success. For example, visuo-spatial short-term memory is an excellent predictor of math abilities and verbal working memory is crucial in the recall and application of math formulas when doing calculations.

The majority of current theories and practices of numerical cognition and pedagogies for mathematics learning do not incorporate the role and contribution of EF processes into their models (e.g., lesson plans and interventions). The interplay between domain-general and domain-specific skills in the development of mathematics proficiency suggests that it is essential that both are integrated into theoretical and teaching frameworks. Although there has been much recent attention to young children’s development of executive functions and early mathematics, few pedagogical programs have integrated the two.

Developing both executive function processes and mathematical proficiencies is essential for children with and without learning disabilities, and high-quality mathematics education may have the dual benefit of teaching this important content area and developing executive function processes. This can be accomplished by paying special attention to the selection of quantitative and spatial models for teaching (Visual Cluster cards, dominos, dice, Ten Frames, Cuisenaire rods, Invicta Balance) rather than to the counting of random objects, number line, fingers, etc. to early numeracy and mathematical outcomes.

Understanding the nature of executive functions and their role in learning, functioning, and success is an important part of developing the pedagogy for mathematics learning and teaching. A review from cognitive sciences shows that it begins with the parents, for example, certain parental behaviors—meaningful praise, affection, sensitivity to the child’s needs, and meaningful encouragement of effort in initiating and finishing tasks, along with intellectual stimulation, meaningful and high expectations, support for autonomy, and well-structured and consistent rules—can help children develop robust executive function skills.

Playing games[2] both traditional (e.g., card games, Connect Four, Stratego, Battleships, Concentration, Simon, etc.) and computer/Internet assisted (e.g., such as Lumosity) games help develop and challenge the executive functions. For example, the game Word Bubbles challenges verbal fluency, the ability to quickly choose words from a mental vocabulary; Brain Shift challenges task switching, the process of adapting to circumstances and switching goals; and many other games challenge other cognitive skills involved in executive functioning. Playing games such as Tetris and working on visual spatial skills can develop skills not only in visually-based mathematics such as geometry or trigonometry but also in considering the step-by-step processes in more complex mathematics.

These games can be adapted to the player and task with increasing difficulty as a player improves. Games and tasks should be accessible and moderately challenging. Games and these training exercises aim at improving flexibility of thought. Complex math word problems often require flexibility in thinking and may require more problem-solving and trial-and-error approaches, games are effective means for such a goal.

Although there is empirical evidence to support both domain-general and domain-specific models, but more and specific skills learning is favored in studies that focus on children’s training that emphasize domain-specific perspective. Research, for example, has shown that children’s visual-spatial WM fails to explain variance in their word reading and passage comprehension similarly verbal WM fails to account for difficulty in mathematics achievement. Verbal WM accounts for statistically significant variance in performance on these verbal tasks, even when relevant verbal skills (e.g., word reading) are controlled.

Further support of a domain-specific view comes from scholarly reviews of WM deficits among children with learning difficulties. Children with serious learning problems exhibit WM deficits across verbal and visual-spatial domains, however, verbal WM deficits appear more important to the children with reading difficulties. Visual-spatial deficits, by contrast, seem more relevant for children with mathematics difficulties. Moreover, the researchers of most previous WM training with children that uses visual-spatial WM tasks does not transfer to academic performance related to reading skills. Similarly, WM training that focuses on verbal WM tasks shows little training effects that transfer to visual-spatial WM or related academic performance in arithmetic.

Recent reviews of working memory (WM) training have concluded that, for children between the ages of 8 and 15, WM training involving visual-spatial tasks or a combination of visual-spatial and verbal tasks can improve visual-spatial WM, but with limited effects on the academic performance. Therefore, in our training with children in clinical settings we have found that any training to improve EF that does not include domain-specific numerical content has little or no impact on executive functioning and mathematics achievement – for example, when children use mainly non-computerized games with either numerical or non-numerical content. Visuo-spatial working memory improves in both groups compared to controls, but only the numerical training group shows an improvement in numerical skills, suggesting that training needs to be domain-specific.

There is research to show that specific mathematics tutoring to children′s cognitive skills (including EF skills) improves mathematics achievement. Attention and working memory measures predict performance on mathematics measures at the end of such training, suggesting that children′s EF skills do have an impact on their ability to learn new mathematical material.

Only by exploring the differential role of EF skills in multiple components of mathematical knowledge in different age groups, as well as distinguishing between the acquisition and skilled application of this knowledge, will we understand the subtleties in the relationship between EF skills and mathematics learning and build a structure for an instructional design.

There is one surprising but well-supported way to improve executive function in both children and adults: aerobic exercise. A review of research concludes that “ample evidence indicates that regular engagement in aerobic exercise can provide a simple means for healthy people to optimize a range of executive functions.”

Of course, the big question is: How to improve executive function? Which activities, if any, will increase a person’s executive functions—chances of remaining mentally sharp in engaging demanding learning activities? Research shows that to improve executive function, one should work hard at something—cognitive, emotional, or physical. Many labs studying brain functions have observed that the critical brain regions increase in activity when people perform difficult tasks, whether the effort is physical or mental. You can therefore help keep these regions thick and healthy through vigorous exercise and bouts of strenuous mental effort.

Of course, the big question is: How to improve executive function? Which activities, if any, will increase a person’s executive functions—chances of remaining mentally sharp in engaging demanding learning activities? Research shows that to improve executive function, one should work hard at something—cognitive, emotional, or physical. Many labs studying brain functions have observed that the critical brain regions increase in activity when people perform difficult tasks, whether the effort is physical or mental. You can therefore help keep these regions thick and healthy through vigorous exercise and bouts of strenuous mental effort.

Of course, the big question is: How to improve executive function? Which activities, if any, will increase a person’s executive functions—chances of remaining mentally sharp in engaging demanding learning activities? Research shows that to improve executive function, one should work hard at something—cognitive, emotional, or physical. Many labs studying brain functions have observed that the critical brain regions increase in activity when people perform difficult tasks, whether the effort is physical or mental. You can therefore help keep these regions thick and healthy through vigorous exercise and bouts of strenuous mental effort.

School-aged children. Studies of children have found that regular aerobic exercise can expand their working memory—the capacity that allows us to mentally manipulate facts and ideas to solve problems—as well as improve their selective attention and their ability to inhibit disruptive impulses. Regular exercise and overall physical fitness have been linked to academic achievement, as well as to success on specific tasks.

Young adults. Executive functioning reaches its peak levels in young adults, and yet it can be improved still further with aerobic exercise. Studies on young adults find that those who exercise regularly post quicker reaction times, give more accurate responses, and are more effective at detecting errors when they engage in fast-paced tasks.

Older adults. Research on older adults has found that regular aerobic exercise can boost the executive functions that typically deteriorate with age, including the ability to pay focused attention, to switch among tasks, and to hold multiple items in working memory.

[1] More on working memory in the previous two posts and more information related to executive function in the next post—Part II of this topic.

[1] See the previous posts on Working Memory and Mathematics Learning Part I and Part II.

[2] See Games and Their Uses in Mathematics Learning (Sharma, 2008).

Executive Function: Mathematics Achievement (Part III)

Executive Function: Working Memory (Part II)

Working memory (WM) refers to the capacity to store information temporarily when engaging in cognitively demanding activities. Compared to short-term memory, WM plays a more influential role in children’s mathematics performance. This is because many mathematics tasks such as concepts and procedures involve multiple steps with intermediate solutions that must be remembered for a short time to accomplish the task at hand. For example, when reading a word problem, children must remember first the terms and expression for comprehension and relate them to previously learned information while simultaneously integrating incoming information in quantity as they progress through a text. As they proceed with the words of the text, they invoke symbols, formulas, concepts, and procedures they need to hold in the working memory. Several studies have shown that training improves children’s WM and academic skills, like reading comprehension and mathematics reasoning.

Working memory is thus important for the mathematics achievement of children who demonstrate a specific difficulty with mathematics. Children with mathematics disabilities have particular difficulty with the central executive component of working memory, especially when numerical information is involved.

Working memory is the record keeper during learning and problem solving (e.g., monitoring and manipulating information in mind that arises in partial calculations—partial sums, products, quotients, partial simplification in algebraic expressions and equations, etc.). In other words, executive function (EF) is like the executive that leads the learning process in all its aspects. It thinks for us. EF’s functioning is a major determinant in our learning.

Working memory is important at all ages in order to hold interim answers while performing other parts of a sum. In the process of learning, we are constantly updating the status and quality of information at hand by the incoming information. To keep track of the incoming information, seeking the related information from the long-term memory and making connections takes place in the working memory. Thus, the information in the working memory is dynamic, always in flux and change. Keeping track of changes and updating requires constant attention. This updating (in working memory) involves an attentional control system (the central executive), supported by two subsidiary slave systems for the short-term storage of verbal and visuo-spatial information (the phonological loop and visuo-spatial sketchpad, respectively).

Working memory accounts for unique variance in written and verbal calculation, as well as mathematical word problems, across different age groups. Importantly, it is the ability to manipulate and update, rather than simply maintain, information in working memory that seems to be critical for mathematics proficiency (e.g., a partial product is added to the previous information in a multi-digit multiplication problem; keeping track of different elements and sequence of arguments in the development of a geometrical and algebraical proof). The role of working memory is so important that the variance in the rate of learning and difference in achievement in fact mastery and procedure proficiency cannot all be explained by other factors such as age, IQ, mathematics ability, processing speed, reading and language skills.

The role of executive functions is related to different domains of mathematics skills and age. For example, at the start of school, inhibition and working memory contribute to performance in tests of both mathematics and reading. For example, in 5-year-olds, EF skills explain more variance in mathematics than in reading. In later years, working memory and inhibition skills predict performance on school exams in English, mathematics and science at both 11 and 14 years of age. EF skills predict both mathematics and reading scores across development. However, the role of working memory is reduced with age because students begin to rely on written forms of mathematics, rote procedures, and aids to calculations (e.g., multiplication tables, graphic organizers, number line, concrete models, calculators, etc.).

Just like children’s reliance on working memory changes over a greater developmental range, executive function also changes with age. For example, when 10–12-year-olds solve arithmetical problems while performing an active concurrent task designed to load the central executive, their performance is impaired by the demands of the dual task for all strategies that children use.  This effect is greater for a decomposition strategy than for retrieval or counting. The amount of impairment decreases with age for retrieval and counting but not for decomposition as the decomposition strategies are consistent in their demands. When 9–11-, 12–14-year-olds and adults solve addition problems by counting, decomposition and retrieval strategies while performing either a concurrent working memory or a control task, it was found that the load on working memory slowed 9–11-year-olds′s performance on the addition problems for all three strategies, 12–14-year-olds for the two procedural strategies but adults only for counting. This suggests that children do rely on working memory to a greater extent than adults when solving arithmetic problems, most likely due to the fact that all arithmetic strategies are less automatic and efficient in children and therefore rely more on general processing resources.

The role of EF becomes even more evident as arithmetical processing involves multiple tasks in the same problem. As a result, a student may face difficulty with tasks that require the manipulation of information within the central executive component of working memory.  There may be manifestation of impairment. However, the central executive component is not impaired when the tasks require only storage of verbal information. In most assessments and problem solving, the arithmetic calculations involve three tasks: arithmetic verification (“Is it a multiplication or a division problem?” “Is it a linear or quadratic equation?) and constructing (e.g., setting or recalling appropriate form of the operation, equation, algorithm, formula— “How do I write the equation?” “Is it an application of Pythagoras theorem?” “Should I solve this system by method of elimination or substitution?”), and generating an answer (actually performing that operation— “How do I convert this improper fraction into a mixed fraction?”).

Arithmetic poses extra complexity: people use different strategies to solve even the simplest of problems (8 + 6 = ?), such as rote retrieval (respond: 14), sequential counting (respond: 9, 10, 11, 12, 13, 14. It is 14) or decomposition strategies (respond: 8 + 2 + 4 = 14, 7 + 1 + 6 = 7 + 7 = 14, 8 + 8 – 2 = 16 – 2 = 14, 2 + 6 + 6 = 2 + 12 = 14, etc.). Each one of these strategies place different demands on the working memory. For example, retrieval from memory (automatized facts—learning by flash cards, mad minutes, Apps, etc.) and generating facts by counting (whether counting both addends or counting up from bigger addend or from smaller addend) are not affected by EF and working memory deficits.

Decomposition demands more from the working memory as it involves strategies and holding keeping track of intermediate steps.  Therefore, many teachers take the easier route of teaching arithmetic facts by counting and memorization or giving children multiplication tables, facts charts, and calculators.  However, counting (addition: counting up, subtraction: counting down, and multiplication and division: skip counting forward and backward, respectively, on a number line) do not help students for mastering arithmetic facts easily. These are not generalizable strategies and they neither develop mathematical way of thinking or strengthen EF skills.  And, when facts are not mastered effectively (with understanding, fluency, and applicability), students find operations on fractions, decimals, algebra and higher mathematics difficult.

Studies found that the effects of working memory load are greater when participants use counting and less for retrieval. But, the effect is the greatest in the case of strategies that rely on decomposition/recomposition, which are the most efficient strategies for mastering arithmetic facts—addition and subtraction and then extended to multiplication over addition or subtraction for learning multiplication tables (e.g., 8×7 = 8(5 + 2) = 8×5 + 8×2 = 40 + 16 = 56). Rather than abandoning this fundamental strategy because it taxes the working memory, we should use efficient and effective instruction models to teach decomposition/recomposition. Decomposition/recomposition strategies at different grade levels can be learned efficiently with instructional materials such as: Visual Cluster cards, Cuisenaire rods, fraction strips, algebra tiles, and Invicta balance.

A second executive function is switching retrieval strategies (see Executive Function Part I where I discuss the first executive function of cognitive inhibition). This is clearly necessary for problems such as multi-digit multiplication or long division algorithm, which typically involves place value, multiplying, regrouping, adding and subtracting. Switching from one sub-task to another is essential for carrying/regrouping operations in all algorithms in arithmetic and mathematics. For example, the process of long division (estimate, multiply, subtract, bring down) or solving simultaneous linear equations (scanning the different methods available to solve the system, selecting the most efficient method, arithmetic operations involved, algebraic manipulations, attending to several variables, keeping the process alive in the brain) are difficult for many students as the number of subtasks is so large and involves frequent task and concept switching.

In addition to the executive functions of cognitive inhibition and switching retrieval strategies, a third executive function is identifying, activating and bringing the relevant information from long-term memory to the working memory and then manipulating the incoming information in from the short-term memory. Executing relevant strategies and procedures in a situation such as using the equivalence of two relationships to find a new fact: what is 5 + 7? (e.g., thinking of decomposition/recomposition in adding:  5 + 7 = 5 + 5 + 2 = 10 + 2 = 12), extending one’s knowledge: what is 3 × 400? (the student retrieves 3× 4 = 12 from long-term memory, and then attempts 3 × 40 =120, receives a feedback—it is right, and then extends it to 3 × 400 = 1200, etc.), or in order to simplify a calculation or thinking of factors of x2 – 16 and recognizing this as a difference of squares (16 = 42 and a2 – b2 = (a – b)(a – b)), therefore, the factors of x2 – 16: (x – 4)(x + 4).

Both central executive measures of working memory, as well as composite EF measures, predict improvements in mathematical competency – and they can be improved. The important finding from research is that progress in mathematics is related to improvement in executive working memory and vice-versa.

Effective teaching focuses both on the development of mathematics content and strengthening EF skills. Executive function is strengthened when there
(a) is information in the long-term memory—vocabulary, conceptual schemas, efficient strategies and procedures,
(b) is immediate feedback to students’ attempts in applying a strategy or solving a problem,
(c) are “good” “scaffolded” questions from the interventionist, and
(d) is enough supervised practice to automatize skills.

Nearly all the components of executive function are involved in arithmetical calculations and in creating conceptual schemas, each playing a somewhat different role. Working memory, as a whole, is the cognitive function responsible for keeping information online (the screen and the sketch-pad of the mind), manipulating it, and using it in our thinking; it is truly responsible for thinking. It is where we delegate the things we encounter to the parts of our brain that can take immediate action. In this way, working memory is necessary for staying focused on a task, blocking out distractions, and keeping our thinking updated and aware about what’s going on around us. Working memory is intrinsically related to executive function. No matter how smart or talented a child, he or she will not do well without the development of key capacities of working memory and executive function.

 

Executive Function: Working Memory (Part II)

Executive Function: Mathematics Learning (Part I)

Children′s underachievement in mathematics is a significant problem with almost one in four leaving elementary school without reaching the mathematics level expected of them, and some failing even to achieve the numeracy skills expected of a 7-year-old. In some cases, these problems endure into adulthood, and a fifth of adults have numeracy skills below the basic level needed for everyday situations. Today, numeracy skills have a bigger impact on life chances than poor literacy. Numeracy is the new literacy.

While it is true that some people are better at mathematics than others, it is also true that the vast majority of people are fully capable of learning K–12 mathematics. Virtually everyone is capable of learning the numeracy content and skills required for good citizenship: an understanding of arithmetic procedures, algebraic thinking, basic concepts of geometry, and use of probability deep enough to apply it to problems in our daily lives.

Learning mathematics does not come as naturally as learning to speak, but our brains do have the necessary equipment. So, learning math is somewhat like learning to read: we can do it, but it takes time and effort and requires mastering increasingly complex skills and content. Just about everyone will get to the point where they can read a serious newspaper, and just about everyone will get to the point where they can do high school–level algebra and geometry. At the same time, not everyone can or wants to reach the point of writing a novel or solving a complex calculus problem.

Many factors contribute to differences in mathematics achievement, personal—past experiences, attitude, motivation, language and intellectual ability, and environmental—social, educational. It is clear that domain-specific numerical skills (number concept, numbersense, and numeracy; spatial sense and geometry) and knowledge are important for success with mathematics, but other cognitive factors also play an equally important role. In particular, the domain-general skills of holding and manipulating information in the mind (working memory) and other such executive functions (EF) have been found to be critical[1]. Working memory, for example, helps children keep information in mind as they are doing a mathematics word problem or a long procedure. The use of executive functions in mathematics is often one of the key determinants of a student’s success in complex mathematics.

Understanding the impact of executive function skills on mathematics is important both for parents and teachers. Rather than viewing children’s difficulties with math as being the result of not understanding particular math operations, it may be that issues such as poor working memory, organization and planning skills are having an impact on the child’s mathematical abilities. As a result, it is helpful to consider the role of these executive skills in teaching, learning, and acquiring mathematical competencies.

Components of Executive Function
The executive functions—the set of higher-order mental skills that allow one to plan and organize, make considered decisions, see and make connections, evaluate and apportion intellectual resources on tasks, monitor the progress, manage time and focus attention, are important to all learning but more important in mathematics. Research suggests that executive function skills, more specifically—updating (monitoring and manipulating) information in the mind (working memory), focusing on relevant information and suppressing distracting information and unwanted responses (inhibition) and flexible thinking (shifting)—play a critical role in the development of learning skills such as metacognition for mathematics learning.

The most prominent EF skills called upon in different components of mathematics learning are: inhibition, updating our working memory, and shifting. These skills play a key role in learning and using complex cognitive, affective, and psycho-motoric skills. EF skills use these resources in planning and coordinating with the other slave systems, the episodic buffer (a place between working and long-term memories to bring and hold information about to be transferred to or retrieved from the long-term memory) and the long-term memory. It plans the sequencing and monitoring of cognitive operations; therefore, all its components and functions collectively are known as executive function.

Executive functions are seen as predictors of individual differences in mathematical abilities. For example, executive functions differ between low achieving and typically achieving children, and the absence of executive functions can be, in some cases, the cause of math learning disabilities. Working memory ability, for example, compared to preparatory mathematical abilities predicts math learning disabilities even over and above the predictive value of preparatory and basic mathematical abilities.

Executive functions form the basis of abilities such as problem solving and flexible thinking and are the foundations for the skill-set needed for mathematical way of thinking. Lack of executive function skills is evident when a student cannot attempt and solve problems without extensive external cues and guidance. This is particularly so when this behavior is prevalent in novel situations.

Executive function skills begin to emerge in infancy but are among the last cognitive abilities to mature and continue to develop into late adolescence. Teachers and parents can make judgments about children’s executive functions by observing their behaviors during math learning, but these skills can also formally be measured using formal assessment tools such as the WCST (Wisconsin Card Sorting Test). This test challenges people to adapt to changing rules and situations, and WCST scores can be used as the primary outcome measure of executive functions. Still, what is even more important is to know what to do when an individual displays the lack of these skills.

Different arithmetic strategies tax EF skills differently as mathematics strategies involve different combinations of and emphasis on linguistic, procedural, conceptual and factual mathematical knowledge. Thus, different mathematics situations may create different EF demands in understanding, achieving fluency, and applying.

Inhibition as an Executive Function Skill in Mathematics
The first executive function is cognitive inhibition—attending selectively to different inputs and focus appropriately. Cognitive inhibitory control abilities predict performance in mathematics. Suppressing distracting information and unwanted responses and engaging in focused action (e.g., in word problems and in similar looking concepts and skills) is called inhibition. It is the ability to actively inhibit or delay a response to achieve a pre-determined goal and focus on a particular desired action. Cognitive inhibition might be measured by presenting someone with information or a cognitive task, then introducing a new cognitive task, which either competes with and threatens to interfere or is aligned with the previous task— and seeing if the subject can suppress that interference or not. Students without any executive function deficit are able to make the shift well; however, those with a deficit will struggle. A student with this executive function deficit will need some kind of reminder, graphic organizer, scaffolding or task analysis to help them to engage in the task properly. It is not surprising that children with SLD, ADD, and ADHD show signs of cognitive interference that impedes their learning.

In mathematics, this kind of interference is quite common; it is clearly a feature of multi-digit multi-concept operations problems carried out as a series of subtasks, where attention needs to paid to selected parts of the problem at different times. For example, in the long-division algorithm, at one moment one is thinking of multiplication to find the quotient, the next moment one has to subtract, etc. Similarly, in estimating the product 23 x 7, the initial focus is on place value and then rounding (23 is about 20 and 7 is about 10, so first rough estimate is 30×10 = 300) to get a sense of the outcome.

To achieve in mathematics, it is important to suppress unwanted behavioral and cognitive processes (automatic and/or overlearned). This initially could be done with help (cues, sympathetic and encouraging support, graphic organizers, lists, mnemonic devices, concrete materials, etc.); ultimately, however, it should be done without cues and support. This support should help in suppressing irrelevant automatic responses and one should be helped in actively engaging in strategic processes. The strategies should be aimed towards attaining a short- and/or long-term goal, such as engaging in conscious, reflective problem-solving, searching, selecting, and applying appropriate strategies, making strategic decisions and evaluating their impact on a task. The help should also involve maintaining that delay when encountering interference and resistance. Working memory[1]—a dynamic mechanism with a capacity to store information over short periods of time acts as an aid in this effort of inhibition and other related cognitively demanding activities.

Inhibition is an important factor in applying strategies and problem solving (one has to choose the right strategy out of several possible ones of varying efficiencies). Suppressing unwanted habitual or overlearned responses allows the student to search for, develop and/or implement more efficient actions and strategies.

Inhibition is necessary to suppress answers to related but incorrect number facts (e.g. inhibit 6 when asked 3×3; inhibit 8 when asked for 42, etc.). Part of such interference is due to students’ poor conceptual understanding and partly due to visual perceptual difficulties.

Inhibition, along with shifting, is also needed when a student is learning new concepts as she has to inhibit an automatic procedural approach (an overlearned activity in our classrooms) and she needs to shift attention towards the true conceptual numerical relationships involved in the concept. For example, when students have become too dependent on a procedure, they have difficulty in acquiring mental math capacities. For example, consider the simple problem of 16 – 9 being handled by a middle school student who has not learned the strategies based on decomposition/ recomposition and knows the subtraction procedure of regrouping:

screen-shot-2017-02-03-at-10-19-49-pm

The arithmetic procedures should be introduced to children only after they have acquired efficient strategies of mental math using decomposition/recomposition.

Inhibition is a variable, not a stable, developmental mental process; it is dependent on the task, concept, procedure, or the problem. The context plays a significant role in its application. Inhibition first appears in development around age three or four but continues to develop through adolescence. It is also the primary executive function that precedes and supports the development of other executive functions.

Inhibition is likely to be especially important at younger ages to suppress less sophisticated strategies, e.g. counting on from the first addend, in order to use more sophisticated strategies, such as counting on from the larger addend or using decomposition/recomposition.

Inhibitory mechanisms are distinguished by the related psychological constructs that they act upon, such as behavior and cognition. Thus, inhibition can occur at the behavioral level (e.g. immediate response control or lack of control to an environmental stimulus or failure— “I knew I could not do fractions” “I hate math.” The child throws tantrums.) and/or at the cognitive level—pre-conceived response or application of a strategy to a task or lack of flexibility in thinking (e.g. attentional inertia—repeating the question vocally or sub-vocally— “8×7” “eight times seven” “eight times seven”) or using counting as a strategy in addition and subtraction for even the simplest of problems even if better strategies are available (e.g., strategies are too difficult for me. Just give me the trick. Why can’t you tell me just how to do it?”) In the case of mathematics learning, cognitive and behavioral dis-inhibition may manifest concurrently as one may trigger the other.

Behavioral inhibition is a tendency to over display some behaviors and actions or a lack of display of appropriate speech and action when the child encounters an unfamiliar or challenging event. Behaviorally, it may lead to resistance, tantrums, oppositional behavior, lack of interest and abandonment of the task, thereby disinterest in the learning activity. Behavioral inhibition can also be of secondary nature, e.g., when a child encounters a task that she has been unsuccessful at previously.

Some effective solutions to this problem is to provide the student:

(a) small but meaningful and measurable successes in tasks relevant to the new concept and procedure (e.g., knowing the 45 sight facts with integers using Visual Cluster cards before the lesson on integers for sixth and seventh grade students is taught), and

(b) intentionally relating this success to the cause of the success, thereby, improving student’s metacognition. For example, the teacher helps a student (or the whole class) to memorize a particular multiplication table, say the table of 4 (using distributive property—decomposition/ recomposition of fact into known facts) and then gives 25 fraction problems where the numbers involved in numerators and denominators are multiples of 4 and asks them to reduce the fractions to the lowest terms. And then the teacher points out that since the children had memorized the table (cause of success), the problem of converting a given fraction into lowest terms was so easy (success). Success is the greatest motivator for participating in the learning process, but it also helps developing inhibition actions.

At the cognitive level, the behavior may be application of an overlearned skill or strategy or lack of inhibition or inflexibility in responding to a task. Cognitive inhibition is defined as the active over play or suppression of previously activated cognitive representations. It may also include the inability to remove incorrect inferences from memory when correct inference is available or overusing an inefficient strategy when efficient and elegant strategies are available. This inflexibility can be improved. This is possible when we provide efficient and effective strategies of learning mathematics and enough practice rather than the strategies that are laborious and cannot be generalized and extrapolated.

Some cognitive and neuropsychological research suggests separation when dealing with cognitive and behavioral inhibition, but I have found that providing progressively successful experiences and developing metacognition skills makes it possible to handle both of these issues at the same time, except in extreme cases.

Lack of inhibition has impact on several curricular components of mathematics, but it particularly affects strategic word problem solving. Because inhibition is an important variable with regard to text comprehension in word problems and also affects memory during word recognition, having poor inhibition skills leads to poor recognition of words, formulas, definitions, and results in mathematics problem solving. This is due to the fact that mathematical terms are compact and abstract—each word is packed with contextual meanings. Each word contains schema for a concept or a procedure.  This is particularly so with compound terms in mathematics. For example, when students encounter problems related to greatest common factor (GCF) and least common multiple (LCM), many give wrong answers as they focus on the first word in the term.  Similarly, when asked to calculate the perimeter or area of a rectangle (or circumference and area of a circle), many students give wrong answers. This is the result of cognitive interference of co-existing schemas and lack of inhibition on the part of the student. I believe this is partly due to lack of effective linguistic, concrete and visual models. It is also due to lack of proper teaching and partly due to lack of differentiation and inhibition of secondary tasks.

 

Executive Function: Mathematics Learning (Part I)